Продолжаем изучать основы электроники на нашем сайте, и героем сегодняшней статьи будет еще одно замечательное устройство - а именно операционный усилитель. Сегодня разберемся, что это вообще такое, как он работает, ну и парочку основных схем по традиции разберем.
Итак, по определению ОУ - это дифференциальный усилитель постоянного тока с очень большим коэффициентом усиления и несимметричным выходом. Теперь разберемся, что это значит...
ОУ имеет два входа и один выход. Один из этих входов называют неинвертирующим и обозначают на схемах плюсом, второй, соответственно, является инвертирующим. Так вот, напряжение на выходе ОУ определяется следующим образом:
U_{вых} = K(U_+\medspace-\medspace U_-)
K - это коэффициент усиления операционника, обычно он имеет значения порядка 100000 - 1000000. Из формулы видим, что в случае, когда сигналы на обоих входах ОУ равны, на выходе ноль. Если, например, потенциал инвертирующего входа (-) стал более положительным, чем потенциал неинвертирующего входа (+), то выходной сигнал изменится в отрицательном направлении. В этом и заключается работа операционного усилителя.
Помимо уже упомянутых входов и выхода ОУ имеет также выводы для подачи питания, и вот как выглядит его обозначение на принципиальных схемах:
Чаще всего в схемах на операционниках используется обратная связь, поскольку коэффициент усиления ОУ без обратной связи слишком уж велик. В замечательной книге Хоровица и Хилла приведены несколько, а точнее два правила, которые определяют как работает операционник в схемах с обратной связью.
- Итак, первое правило заключается в том, что входы ОУ не потребляют ток. Конечно, в реальности потребление все-таки есть, поскольку идеального ничего не бывает, но это потребление составляет единицы нА, а то и меньше.
- Второе правило заключается в том, что выход ОУ стремится к тому, чтобы разность напряжений между его входами была равна нулю. Вот эта формулировка мне, честно говоря, не слишком нравится. А суть тут заключается в том, что часть выходного напряжения через цепь обратной связи передается на вход и в результате этого потенциал обоих входов ОУ выравнивается.
Для того, чтобы разобраться в работе операционного усилителя, давайте рассмотрим пару-тройку схем. И начнем со схемы неинвертирующего усилителя (кстати на схемах порой опускают обозначение выводов для подачи питания на ОУ, мы, пожалуй, тоже так поступим):
Для начала определим, какое же значение напряжения мы получим на выходе, подав на вход U_{вх}. Как следует из второго правила - операционник с обратной связью "добьется" того, чтобы потенциалы входов выровнялись, а это значит, что:
U_- = U_{вх}
Но в то же время R_1 и R_2 образуют делитель напряжения и тогда:
U_- = \frac{U_{вых}\medspace R_1}{R_1\medspace+\medspace R_2}
Приравниваем эти два значения и получаем, что:
U_{вых} = U_{вх}\medspace (1 + \frac{R_2}{R_1})
K_{ус} = \frac{U_{вых}}{U_{вх}} = 1\medspace+\medspace\frac{R_2}{R_1}
Получили такой вот коэффициент усиления для неинвертирующего усилителя на операционном усилителе с обратной связью.
Давайте рассмотрим конкретный пример, чтобы еще лучше понять работу данной схемы. Пусть будут такие номиналы: R_2 = 10\medspace КОм , R_1 = 1\medspace КОм. На вход подадим 1 В. В этом случае напряжение на выходе ОУ начнет расти, поскольку (U_+\medspace-\medspace U_- > 0).
И расти оно будет до тех пор, пока потенциал на инвертирующем (-) выходе не станет равен 1 В (так как на неинвертирующем входе (+) у нас как раз-таки 1 В). Остается определить, при каком выходном значении напряжения, U_- будет равно 1 В. Входы ОУ ток не потребляют, значит ток протекает по цепи выход - R_2 - R_1 - земля:
I = \frac{U_{вых}}{R_1\medspace+\medspace R_2} = \frac{U_-}{R_1}
Из этого равенства без проблем определим U_{вых}, при значении U_- равном 1 В:
U_{вых} = U_-\frac{R_1\medspace+\medspace R_2}{R_1}
Подставив наши значения, получим U_{вых} = 11\medspace В. Это подтверждает верность выведенной нами ранее формулы U_{вых} = U_{вх}\medspace(1 + \frac{R_2}{R_1}).
С неинвертирующим усилителем разобрались, давайте рассмотрим еще одну схему - инвертирующий усилитель.
В принципе работает эта схема практически так же, как предыдущая. На неинвертирующем (+) входе потенциал земли, значит на инвертирующем тоже будет такой же потенциал. То есть:
U_- = 0
Не забываем, что ток входы ОУ не потребляют, а значит ток протекает по цепи выход - R_2 - R_1 - вход и равен он:
I = \frac{U_{вых}\medspace-\medspace U_-}{R_2} = \frac{U_-\medspace-\medspace U_{вх}}{R_1}
Отсюда нам остается только выразить U_{out} и определить коэффициент усиления цепи:
U_{вых} = -U_{вх}\medspace\frac{R_2}{R_1}
K_{ус} = -\frac{R_2}{R_1}
Сразу же становится понятно, почему усилитель называется инвертирующим - сигналы на входе и на выходе разных знаков.
В завершение рассмотрим, пожалуй, еще одну небольшую схемку, а именно схему повторителя на операционном усилителе с обратной связью:
Если внимательно посмотреть на эту схему, то становится понятно, что это всего лишь неинвертирующий усилитель, у которого R_1 равно бесконечности, а R_2 равно нулю. Подставив эти значения в формулу для U_{out} получим:
U_{вых} = U_{вх}\medspace(1\medspace+\medspace\frac{R_2}{R_1}) = U_{вх}
Таким образом, напряжение на выходе повторяет сигнал на входе. Огромный плюс такого повторителя заключается в том, что его входной импеданс огромен, а выходной, напротив, мал. И, наверно, на этом сегодня закончим, а в следующей статье рассмотрим и проанализируем какие-нибудь схемы посложнее. До скорых встреч!