Последовательное и параллельное соединение катушек индуктивности. Добротность и энергия.

Продолжаем обсуждение катушек индуктивности! В первой статье (ссылка) мы обсудили все основные аспекты, а именно устройство катушек, принцип работы и их поведение при использовании в цепях постоянного и переменного тока. Но некоторые моменты остались незатронутыми, собственно, их мы и обсудим в этой статье 🙂

Соединения катушек индуктивности

Активное сопротивление и добротность катушки индуктивности.

Итак, начнем мы с того, что обсудим некоторые характеристики катушек индуктивности, с которыми мы не успели познакомиться в предыдущей статье. И для начала рассмотрим активное сопротивление катушки.

Рассматривая примеры включения катушек в различные цепи мы считали их активное сопротивление равным 0 (такие катушки называют идеальными). Но на практике любая катушка обладает ненулевым активным сопротивлением. Таким образом реальную катушку индуктивности можно представить как идеальную катушку и последовательно включенный резистор:

Активное сопротивление катушек индуктивности

Идеальная катушка, как вы помните, не оказывает никакого сопротивления постоянному току, и напряжение на ней равно 0. В случае с реальной катушкой ситуация несколько меняется. При протекании по цепи постоянного тока напряжение на катушке будет равно:

U_L = IR_a

Ну а поскольку частота тока равна 0 (постоянный ток), то реактивное сопротивление будет равно:

X_L = 2\pi f L = 0

А что же будет происходить при включении реальной катушки индуктивности в цепь переменного тока? Давай разбираться. Представим, что по данной цепи течет переменный ток i, тогда общее напряжение на цепи будет складываться из следующих компонент:

u = iR + u_L

Напряжение на идеальной катушке, как вы помните, выражается через ЭДС самоиндукции:

u_L = -\varepsilon_L = L\frac{di}{dt}

И мы получаем для напряжения на реальной катушке индуктивности:

u = iR + L\frac{di}{dt}

Отношение реактивного (индуктивного) сопротивления к активному называется добротностью и обозначается буквой Q:

Q = \frac{X_L}{R}

Раз активное сопротивление R идеальной катушки равно 0, то значит ее добротность Q будет бесконечно большой. Соответственно, чем выше добротность катушки индуктивности, тем она ближе к идеальной.

Активное сопротивление катушки мы рассмотрели, давайте перейдем к следующему вопросу.

Энергия катушки индуктивности.

Электрический ток, протекающий через катушку способствует накоплению энергии в магнитном поле катушки. При пропадании/отключении тока эта энергия будет возвращена в электрическую цепь, с чем мы и столкнулись при рассмотрении катушек индуктивности в цепях постоянного тока. Больше тут добавить особо нечего, просто приведу формулу, по которой можно определить величину накопленной энергии катушки индуктивности:

W = \frac{LI^2}{2}

Давайте переходить к вариантам соединения катушек между собой…Все расчеты мы будем производить для идеальных катушек индуктивности, то есть их активные сопротивления равны 0. К слову, в большинстве теоретических задач и примеров, рассматриваются именно идеальные катушки, но не стоит забывать о том, что в реальных цепях активное сопротивление не равно 0 и его необходимо учитывать при проведении любых расчетов.

Последовательное соединение катушек индуктивности.

Последовательное соединение катушек индуктивности

При последовательном соединении катушек индуктивности их можно заменить одной катушкой с величиной индуктивности, равной:

L_0 = L_1 + L_2

Вроде бы все просто, проще некуда, но тут есть один важный момент. Данная формула справедлива только в том случае, если катушки расположены на на таком расстоянии друг от друга, что магнитное поле одной катушки не пересекает витков другой:

Поле катушек индуктивности

Если же катушки расположены близко друг к другу и часть магнитного поля одной катушки пронизывает вторую, то тут ситуация совсем другая. Возможно два варианта:

  • магнитные потоки катушек имеют одинаковое направление
  • магнитные потоки направлены навстречу друг другу

Первый случай называется согласным включением катушек — начало второй катушки подключается к концу первой. А второй вариант называют встречным включением — конец второй катушки подключается к началу первой. На схемах начало катушки обозначают символом «*«. Таким образом на схеме, которая представлена на рисунке мы имеем согласное включение катушек индуктивности. Для этого случая общая индуктивность определяется так:

L = L_1 + L_2 + 2M

Где M — взаимная индуктивность катушек.

При встречном включении последовательно соединенных катушек индуктивности:

L = L_1 + L_2 - 2M

Можно заметить, что если потоки имеют одинаковое направление (согласное включение), то общая индуктивность увеличивается на двойную величину взаимной индуктивности, а если потоки направлены навстречу друг другу — уменьшается на ту же самую величину.

Параллельное соединение катушек индуктивности.

Параллельное соединение катушек индуктивности

При параллельном соединении катушек индуктивности также возможны три варианта:

  • Магнитное поле одной катушки не пересекает витков второй катушки, тогда: \frac{1}{L_0} = \frac{1}{L_1} +\frac{1}{L_2} или L_0 = \frac{L_1L_2}{L_1 + L_2}
  • Часть магнитного потока одной катушки пронизывает витки второй и катушки включены согласно (как изображено на рисунке — то есть начала обеих катушек подключены к одному узлу). В этом случае: L_0 = \frac{L_1L_2 - M^2}{L_1 + L_2 - 2M}
  • Часть магнитного потока одной катушки пронизывает витки второй и катушки включены встречно. В этом случае: L_0 = \frac{L_1L_2 - M^2}{L_1 + L_2 + 2M}

Также как и в случае с последовательным соединением, при согласном включении общая индуктивность будет больше (поскольку знаменатель дроби будет меньше).

Собственно, на этом мы заканчиваем рассмотрение катушек индуктивности. Ранее мы изучили конденсаторы и резисторы, а в будущих статьях нам предстоит работать с цепями, включающие все эти элементы в разных комбинациях 🙂 Так что подписывайтесь на обновления и не пропускайте новые статьи на нашем сайте!

Понравилась статья? Поделись с друзьями!

Последовательное и параллельное соединение катушек индуктивности. Добротность и энергия.: 5 комментариев
  1. «Ну а поскольку частота тока равна 0 (постоянный ток), то реактивное сопротивление будет равно:
    X_L = 2»

    Небольшая опечатка. X_L = 0

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *