Приветствую всех снова на нашем сайте 🙂 Мы продолжаем активно погружаться в нюансы работы биполярных транзисторов и сегодня мы перейдем к практическому рассмотрению одной из схем использования БТ – схеме ключа на транзисторе!
Суть схемы довольно проста и заключается в том, что как и любой переключатель, транзистор должен находиться в одном из двух состояний – открытом (включенном) и закрытом (выключенном). То есть либо транзистор пропускает ток, либо не пропускает. Давайте разбираться!
И, первым делом, давайте саму схему и рассмотрим:

Здесь у нас используется n-p-n транзистор. А вот вариант для p-n-p:

И по нашей уже устоявшейся традиции будем разбирать все аспекты работы на примере n-p-n транзистора 🙂 Суть и основные принципы остаются неизменными и для p-n-p. Так что работаем с этой схемой (здесь мы добавили протекающие по цепи токи):

Как вы уже заметили, схема очень напоминает включение транзистора с общим эмиттером. И действительно именно схема с ОЭ чаще всего используется при построении ключей. Только здесь у нас добавились два резистора (R_б и R_к). Вот с них и начнем!
Зачем же нужен резистор в цепи базы?
Итак, нам нужно подать на переход база-эмиттер напряжение прямого смещения. Его величина указывается среди параметров конкретного транзистора и обычно составляет в районе 0.6 В. Также мы знаем, какой управляющий сигнал мы будем подавать на вход для того, чтобы открыть транзистор. Например, при использовании микроконтроллера STM32 для управления ключом, на входе цепи у нас будет либо 0 В (транзистор в данном случае закрыт), либо 3.3 В (транзистор открыт). В данной схеме сигнал на вход подается не с контроллера, а напрямую с источника напряжения E_{вх} при замыкании переключателя S_1.
Таким образом, получаем, что при 3.3 В на входе напряжение на резисторе R_б составит:
А теперь вспоминаем, что управление биполярным транзистором осуществляется изменением тока базы – а как его менять? Верно – изменяя сопротивление этого самого резистора! То есть, варьируя сопротивление резистора, мы меняем ток базы и, соответственно, этим самым вносим изменения в работу выходной цепи нашей схемы. Чуть позже мы рассмотрим практический пример для конкретных номиналов и величин и посмотрим на деле, как это работает.
Мы уже несколько раз использовали термины “транзистор открыт” и “закрыт”. Понятно, что это означает наличие, либо отсутствие коллекторного тока, но давайте рассмотрим эти понятия применительно к режимам работы транзистора. И тут все достаточно просто:
- для того, чтобы закрыть транзистор, мы стремимся перевести его в режим отсечки
- а чтобы открыть – в режим насыщения
То есть при проектировании ключа на биполярном транзисторе мы преследуем цель переводить транзистор то в режим отсечки, то в режим насыщения в зависимости от управляющего сигнала на входе!
Переходим к рассмотрению коллекторной цепи разбираемой схемы. В данном резистор R_к выполняет роль нагрузки, а также ограничивает ток в цепи во избежания короткого замыкания источника питания E_{вых}. И вот теперь пришло время вспомнить выходные характеристики, которые мы совсем недавно обсуждали 🙂

Но в данном случае выходные параметры схемы определяются помимо всего прочего еще и нагрузкой (то есть резистором R_к). Для коллекторной цепи мы можем записать:
Или:
Этим уравнением задается так называемая нагрузочная характеристика цепи. Поскольку резистор – линейный элемент (U_R = I_R R), то характеристика представляет из себя прямую (которую так и называют – нагрузочная прямая). Наносим ее на выходные характеристики транзистора и получаем следующее:

Рабочая точка в данной схеме будем перемещаться по нагрузочной прямой. То есть величины U_{кэ} и I_к могут принимать только те значения, которые соответствуют точкам пересечения выходной характеристики транзистора и нагрузочной прямой. Иначе быть не может 🙂
И нам нужно обеспечить, чтобы в открытом состоянии рабочая точка оказалась в положении 1. В данном случае падение напряжения U_{кэ} на транзисторе будет минимальным, то есть почти вся полезная мощность от источника окажется на нагрузке. В закрытом же состоянии рабочая точка должна быть в положении 2. Тогда почти все напряжение упадет на транзисторе, а нагрузка будет выключена.
Теперь, когда мы разобрались с теоретическими аспектами работы ключа на транзисторе, давайте рассмотрим как же на практике производятся расчеты и выбор номиналов элементов!
Расчет ключа на биполярном транзисторе.
Добавим в схему полезную нагрузку в виде светодиода. Резистор R_к при этом остается на месте, он будет ограничивать ток через нагрузку и обеспечивать необходимый режим работы:

Пусть для включения светодиода нужно подать на него напряжение 3В (U_д). При этом диод будет потреблять ток равный 50 мА (I_д). Зададим параметры транзистора (в реальных схемах эти значения берутся из документации на используемый транзистор):
- Коэффициент усиления по току h_{21э} = 100…500 (всегда задан именно диапазон, а не конкретное значение)
- Падение напряжения на переходе база-эмиттер, необходимое для открытия этого перехода: U_{бэ} = 0.6 \medspace В.
- Напряжение насыщения: U_{кэ \medspace нас} = 0.1 \medspace В.
Мы берем конкретные значения для расчетов, но на практике все бывает несколько иначе. Как вы помните, параметры транзисторов зависят от многих факторов, в частности, от режима работы, а также от температуры. А температура окружающей среды, естественно, может меняться. Определить четкие значения из характеристик при этом бывает не так просто, поэтому нужно стараться обеспечить небольшой запас. К примеру, коэффициент усиления по току при расчете лучше принять равным минимальному из значений, приведенных в даташите. Ведь если коэффициент в реальности будет больше, то это не нарушит работоспособности схемы, конечно, при этом КПД будет ниже, но тем не менее схема будет работать. А если взять максимальное значение h_{21э}, то при определенных условиях может оказаться, что реальное значение оказалось меньше, и его уже недостаточно для обеспечения требуемого режима работы транзистора.
Итак, возвращаемся к примеру 🙂 Входными данными для расчета кроме прочего являются напряжения источников. В данном случае:
- E_{вх} = 3.3\medspace В. Я выбрал типичное значение, которое встречается на практике при разработке схем на микроконтроллерах. В этом примере подача и отключение этого напряжения осуществляется переключателем S_1.
- E_{вых} = 9\medspace В.
Первым делом нам необходимо рассчитать сопротивление резистора в цепи коллектора. Напряжения и ток выходной цепи во включенном состоянии связаны следующим образом:
При этом по закону Ома:
А ток у нас задан, поскольку мы знаем, какой ток потребляет нагрузка (в данном случае диод) во включенном состоянии. Тогда:
Итак, в этой формуле нам известно все, кроме сопротивления, которое и требуется определить:
Выбираем доступное значение сопротивления из стандартного ряда номиналов и получаем R_{к} = 120\medspace Ом. Причем важно выбирать именно бОльшее значение. Связано это с тем, что если мы берем значение чуть больше рассчитанного, то ток через нагрузку будет немного меньше. Это не приведет ни к каким сбоям в работе. Если же взять мЕньшее значение сопротивления, то это приведет к тому, что ток и напряжение на нагрузке будут превышать заданные, что уже хуже 🙂
Пересчитаем величину коллекторного тока для выбранного значения сопротивления:
Пришло время определить ток базы, для этого используем минимальное значение коэффициента усиления:
А падение напряжения на резисторе R_б:
Теперь мы можем легко определить величину сопротивления:
Опять обращаемся к ряду допустимых номиналов. Но теперь нам нужно выбрать значение, мЕньшее рассчитанного. Если сопротивление резистора будет больше расчетного, то ток базы будет, напротив, меньше. А это может привести к тому, что транзистор откроется не до конца, и во включенном состоянии бОльшая часть напряжения упадет на транзисторе (U_{кэ}), что, конечно, нежелательно.
Поэтому выбираем для резистора базы значение 5.1 КОм. И этот этап расчета был последним! Давайте резюмируем, наши рассчитанные номиналы составили:
- R_{б} = 5.1\medspace КОм
- R_{к} = 120\medspace Ом
Кстати в схеме ключа на транзисторе обычно добавляют резистор между базой и эмиттером, номиналом, например, 10 КОм. Он нужен для подтяжки базы при отсутствии сигнала на входе. В нашем примере, когда S1 разомкнут, то вход просто висит в воздухе. И под воздействием наводок транзистор будет хаотично открываться и закрываться. Поэтому и добавляется резистор подтяжки, чтобы при отсутствии входного сигнала потенциал базы был равен потенциалу эмиттеру. В этом случае транзистор будет гарантированно закрыт.
Сегодня мы прошлись по классической схеме, которой я стараюсь придерживаться, то есть – от теории к практике 🙂 Надеюсь, что материал будет полезен, а если возникнут какие-либо вопросы, пишите в комментарии, я буду рад помочь!