
June 2020 AN4894 Rev 3 1/35

1

AN4894
Application note

EEPROM emulation techniques and software for
STM32 microcontrollers

Introduction

EEPROMs (electrically erasable programmable read-only memories) are used for non-
volatile storage of updatable application data, or to retain small amounts of data in the event
of power failure in complex systems. To reduce cost, an external EEPROM can be replaced
by on-chip Flash memory, provided that a specific software algorithm is used.

This application note describes the software solution (X-CUBE-EEPROM) for substituting a
standalone EEPROM by emulating the EEPROM mechanism using the on-chip Flash
memory available on STM32 Series listed in Table 1: Applicable products. X-CUBE-
EEPROM also provides a firmware package including examples showing how to exploit this
EEPROM emulation driver (see Section 5: API and application examples).

For STM32WB Series products only, an example that maintains a Bluetooth® Low-Energy
connection and communication while performing EEPROM operations is provided.

The emulation method uses at least two Flash memory pages, between which the EEPROM
emulation code swaps data as they become filled. This is transparent to the user. The
EEPROM emulation driver supplied with this application note has the following features:

• Lightweight implementation and reduced footprint

• Simple API consisting of a few functions to format, initialize, read and write data, and
clean up Flash memory pages

• At least two Flash memory pages to be used for internal data management

• Clean-up simplified for the user (background page erase)

• Wear-leveling algorithm to increase emulated EEPROM cycling capability

• Robust against asynchronous resets and power failures

• Optional protection implementation for Flash-memory sharing between cores in multi-
core STM32 devices (for example STM32WB Series).

The EEPROM size to be emulated is flexible and only limited by the Flash memory size
allocated to that purpose.

Table 1. Applicable products

Type Series

Microcontrollers
STM32L4 Series, STM32L4+ Series, STM332L5 Series, STM32G0 Series,
STM32G4 Series, STM32WB Series

www.st.com

http://www.st.com

Contents AN4894

2/35 AN4894 Rev 3

Contents

1 General information . 6

1.1 Reference documents . 6

2 Main differences between external and emulated EEPROM 7

2.1 Difference in write access time . 8

2.2 Programming and erase operations . 8

3 Implementing EEPROM emulation . 9

3.1 Principle . 9

3.2 Page status valid transitions . 10

3.3 Page and variable format .11

3.4 Simple use case . 13

3.5 Reading data . 15

4 Advanced features . 16

4.1 Data granularity management . 16

4.2 Wear leveling algorithm and Flash page allocation 16

4.3 Guard pages . 17

4.4 Cycling capability: EEPROM endurance improvement 17

4.5 Computing the required size of Flash for EEPROM emulation 19

4.6 EEPROM emulation robustness . 20

4.6.1 Data recovery . 20

4.6.2 Page header recovery . 21

4.7 Real-time considerations . 21

4.7.1 Devices embedding Flash memory with RWW (Read While Write)
capability . 21

4.7.2 Running the critical processes from the internal RAM 22

4.7.3 Dual core considerations . 22

4.8 Cleaning up the Flash memory in Interrupt or Polling mode 23

AN4894 Rev 3 3/35

AN4894 Contents

3

5 API and application examples . 24

5.1 EEPROM emulation software description . 24

5.1.1 Key features . 24

5.1.2 STM32Cube expansion software (X-CUBE-EEPROM) 24

5.1.3 User defines . 26

5.1.4 User API definition . 27

5.2 EEPROM emulation memory footprint . 28

5.3 EEPROM emulation timing . 29

6 Embedded application aspects . 32

6.1 Data retention . 32

6.2 Detecting power failures . 32

6.3 Reducing worst case access times . 32

7 Conclusion . 33

8 Revision history . 34

List of tables AN4894

4/35 AN4894 Rev 3

List of tables

Table 1. Applicable products . 1
Table 2. Related documents. 6
Table 3. Differences between external and emulated EEPROM . 7
Table 4. Flash memory properties . 11
Table 5. Emulated EEPROM virtual addresses . 13
Table 6. Flash memory endurance . 17
Table 7. Flash usage for a 4000-byte emulated EEPROM (STM32L4/L4+). 18
Table 8. Boards covered. 25
Table 9. API definition. 27
Table 10. Memory footprint for EEPROM emulation mechanism . 28
Table 11. EEPROM emulation timings for different targets . 29
Table 12. Document revision history . 34

AN4894 Rev 3 5/35

AN4894 List of figures

5

List of figures

Figure 1. Page status evolution . 9
Figure 2. Page status valid transitions . 10
Figure 3. Flash Page and EEPROM variable format . 12
Figure 4. Data update flow. 14
Figure 5. Directory tree . 24

General information AN4894

6/35 AN4894 Rev 3

1 General information

This document scopes STM32 microcontrollers that are based on an Arm®(a) core.

1.1 Reference documents

EEPROM emulation solutions and application notes are available for other STM32 Series
as listed in reference [1] below.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Table 2. Related documents

Reference Document name

[1]

Application notes:

– STM32F0 Series: EEPROM emulation in STM32F0xx microcontrollers (AN4061)

– STM32F1 Series: EEPROM emulation in STM32F10x microcontrollers (AN2594)

– STM32F2 Series: EEPROM emulation in STM32F2xx microcontrollers (AN3390)

– STM32F3 Series: EEPROM emulation in STM32F3xx microcontrollers (AN4046) / EEPROM
emulation in STM32F30x/STM32F31x STM32F37x/STM32F38x microcontrollers (AN4056)

– STM32F4 Series: EEPROM emulation in STM32F40x/STM32F41x microcontrollers (AN3969)

[2] Building wireless applications with STM32WB Series microcontrollers, application note (AN5289)

AN4894 Rev 3 7/35

AN4894 Main differences between external and emulated EEPROM

34

2 Main differences between external and emulated
EEPROM

EEPROM is a key component of many embedded applications that require non-volatile
storage of data updated with byte, half-word, or word granularity during run time. However,
microcontrollers used in these systems are very often based on embedded Flash memory.
To eliminate components, save PCB space and reduce system cost, the STM32 Flash
memory may be used instead of external EEPROM to store not only code, but also data.

Special software management is required to store data in embedded Flash memory. The
EEPROM emulation software scheme depends on many factors, including the required
EEPROM reliability, the architecture of the Flash memory used, and the final product
requirements, among other parameters.

The main differences between embedded Flash memory and external serial EEPROM are
the same for any microcontroller that uses Flash memory technology (they are not specific
to STM32 Series microcontrollers). One difference is that EEPROMs do not require an
erase operation to free up space before data can be written again. Other major differences
are summarized in Table 3.

Table 3. Differences between external and emulated EEPROM

Feature
External EEPROM

(for example, M24C64:
I²C serial access EEPROM)

Emulated EEPROM using on-chip Flash memory

Write time

Random byte Write in 4 ms. Word program
time = 16 ms

Page (32 bytes) Write 4 ms. Consecutive
Words program time = 500 µs

Word program time: from 90 µs to 580 ms (1)

Erase time N/A 2 Kbytes page-erase time: for instance, 22 ms(2)

Memory
Size

From a few Kbytes to 256 Kbytes
Only limited by the size of Flash memory allowed for
EEPROM emulation.

Read
access

Serial: a hundred µs

Random word: 92 µs

Page: 22.5 µs per byte

Parallel: the access time is from 6 µs to 592 µs(1)

Endurance

4 million cycles at 25 °C

1.2 million cycles at 85 °C

600 kilocycles at 125 °C

10 kcycles per page @ 105 °C(2). Using multiple on-
chip Flash memory pages is equivalent to increasing
the number of write cycles. See Section 4.4: Cycling
capability: EEPROM endurance improvement.

Retention(2) 50 years at 125 °C

100 years at 25 °C

7 years @ 125 °C

15 years @ 105 °C

30 years @ 85 °C

1. For further details, refer to Chapter 5.3: EEPROM emulation timing.

2. Example data for STM32L4 Series. Refer to the datasheet of your STM32 product.

Main differences between external and emulated EEPROM AN4894

8/35 AN4894 Rev 3

2.1 Difference in write access time

Flash memories have a shorter write access time allowing critical parameters to be stored
faster in the emulated EEPROM than in an external EEPROM in most cases. However, due
to the data transfer mechanism, the emulated EEPROM write access time sometimes
becomes significantly higher.

2.2 Programming and erase operations

Unlike Flash memories, EEPROMs do not require an erase operation to free up space
before writing to a programmed address. This is a major difference between a standalone
EEPROM and emulated EEPROM using embedded Flash memory.

• Emulated EEPROM using embedded Flash memory

The Erase process management is fully handled by the EEPROM emulation software,
but the Erase operation is left to application software management. This allows a
reduction of the worst case write time, and also Flash Page Erase operations when the
application execution time becomes less critical.

Moreover, as the Flash memory programming and erase operations are quite long,
power failures and other spurious events that might interrupt the erase process (such
as resets) have been considered when designing the Flash memory management
software. The EEPROM emulation software has been designed to be robust against
power failures and fully asynchronous resets.

• Standalone external EEPROM

Once started by the CPU, the writing of a word cannot be interrupted by a CPU reset.
Only a supply failure may interrupt the write process, so power supply monitoring and
properly sized decoupling capacitors are necessary to secure the complete writing
process inside a standalone EEPROM.

AN4894 Rev 3 9/35

AN4894 Implementing EEPROM emulation

34

3 Implementing EEPROM emulation

3.1 Principle

EEPROM emulation can be performed in various ways, taking into consideration the Flash
memory characteristics and final product requirements. The approach detailed below
requires two sets of Flash memory pages allocated to non-volatile data.

The first set of pages is initially erased and used to store new data and Flash programming
operations are done sequentially in increasing order of Flash addresses. Once the first set
of pages is full of data, it needs to be garbage-collected.

The second set of pages collects only the valid data from the first set of pages and the
remaining area can be used to store new data. Once the transfer of valid data to the second
set of pages is completed, the first set of pages can be erased.

Each set of pages can be made up of one or several Flash pages. A header field that
occupies the first four 64-bit words (32 bytes) of each page indicates its status. Each page
has five possible states:

• ERASED: the page is empty (initial state)

• RECEIVE: the page used during data transfer to receive data from other full pages.

• ACTIVE: the page is used to store new data

• VALID: the page is full. This state does not change until all valid data is completely
transferred to the receiving page.

• ERASING: valid data in this page has been transferred. The page is ready to be
erased.

Figure 1 shows the page status evolution in the case where each set of pages is made of
two pages.

Figure 1. Page status evolution

MSv45025V2

Page 0

Init

Write number of variable
elements per page + 1 element

Write 2 * number of variable
elements per page + 1 element

Page 1 Page2 Page 3

ACTIVE ERASED ERASED

VALID ACTIVE ERASED

VALID VALID RECEIVE ERASED

ERASED

Page Transfer Completed with
less than 1 page of valid data ERASING ERASING ACTIVE ERASED

Page Transfer Completed with
more than 1 page of valid data

ERASING ERASING VALID ACTIVE

OR

Page Erase Completed with
less than one page of valid data

ERASED ERASED ACTIVE ERASED

ERASED ERASED VALID ACTIVE

OR

ERASED

Second set of Flash pagesFirst set of Flash pages

Page Erase Completed with
more than one page of valid data

Implementing EEPROM emulation AN4894

10/35 AN4894 Rev 3

3.2 Page status valid transitions

Information provided in this paragraph is only useful for users intending to modify the
EEPROM emulation driver. It is not useful for a simple utilization of the driver.

Figure 2. Page status valid transitions

MSv45026V1

FORMAT
EEPROM

ERASED

RECEIVEACTIVE

VALID

ERASING

Transfer DATA

Write DATA

Write DATA (Page Full)

DATA Transfer to this page completed
(page not full)

DATA transfer to this page completed
(page full)

Erase command issued by application

DATA transfer from this page completed

DATA transfer from this page completed

AN4894 Rev 3 11/35

AN4894 Implementing EEPROM emulation

34

3.3 Page and variable format

Depending on the STM32 Series, Flash memory page sizes and composition can vary.

Moreover, for some STM32 Series, the EEPROM emulation driver supports either single
bank mode, dual bank mode, or both. The right mode must be selected in the EEPROM
emulation driver, according to the mode supported. See Table 4 for this information.

The minimal write width in Flash memory is 64-bits due to its ECC (Error Correcting Code)
that cannot be switched off; only zero (0x0000000000000000) can be written to an already
programmed non-null Flash line. As the first four words are used by the header, a Flash
page can store up to 252 variable elements when the page size is 2 Kbytes, and up to 508
variable elements when the page size is 4 Kbytes.

The possible states of a Flash page are coded by writing 0xAAAAAAAAAAAAAAAA into the
page header. It is possible to determine the page state using the following procedure:

• The page is in ERASING state if its fourth line is not erased

• The page is in VALID state if the third line is not erased and the fourth line is erased

• The page is in ACTIVE state if the second line is not erased and the third and fourth
lines are erased

• The page is in RECEIVE state if the first line is not erased and the second, third and
fourth lines are erased

• The page is in ERASED state if the first four lines are erased.

This algorithm allows the coding of all states and transitions described in Section 3.2: Page
status valid transitions.

Each variable element is defined by a virtual address and a data value to be stored in Flash
memory for subsequent retrieval or update. In the implemented software, the virtual address
is 16 bits long and the data value is either 8 bits, 16 bits or 32 bits long. The driver requires

Table 4. Flash memory properties

STM32 Series/Value Lines Flash memory page sizes
Single bank mode

support
Dual bank mode

support

STM32L4+ Series
4 Kbytes (512 words of 64 bits for
DBANK=1)

No(1) Yes

STM32L41x/42x/43x

44x/45x/46x
2 Kbytes (256 words of 64 bits) Yes No(2)

STM32L47x/48x/49x/4Ax 2 Kbytes (256 words of 64 bits) Yes Yes

STM32L552 STM32L562
2 Kbytes (256 words of 64 bits) (for
DBANK=1)

No (1) Yes

STM32G0x0

STM32G0x1
2 Kbytes (256 words of 64 bits) Yes No(2)

STM32G4xx Series
2 Kbytes (256 words of 64 bits) (for
DBANK=1)

No(1) Yes

STM32WBxx Series 4 Kbyte (512 words of 64 bits) Yes No(2)

1. When in single bank mode, these devices operate 128 bits wide read accesses. However, the EEPROM emulation solution
is designed for 64 bits wide read accesses.

2. These devices do not support the dual-bank feature.

Implementing EEPROM emulation AN4894

12/35 AN4894 Rev 3

the virtual address values to be between 0x0001 (0x0000 corresponds to an EEPROM
element invalidated by the driver), and the maximum number of EEPROM variables
required. Also, since virtual addresses are 16-bits wide, the maximum number of EEPROM
variables cannot exceed 0xFFFE (0xFFFF corresponds to an erased Flash line). Moreover,
the number of variables is limited by the size of the product Flash memory (see Section 4.5:
Computing the required size of Flash for EEPROM emulation).

Each element also contains a 16-bit CRC that is used to check the element integrity. When
data is modified, the modified data associated with the same virtual address is stored in a
new Flash memory location. Data retrieval returns the up-to-date data value.

Figure 3. Flash Page and EEPROM variable format

MSv45027V2

Flash Page
RECEIVE
ACTIVE
VALID

ERASING

Page Header
(4 * 8 bytes)

Page Data
(Number of variable
elements per page

* 8 bytes)

16-bit
Virtual

Address
16-bit
CRC

8, 16 or 32-bit
Data value

Variable Element

0xFFFFFFFFFFFFFFFF
for ERASED page

AN4894 Rev 3 13/35

AN4894 Implementing EEPROM emulation

34

3.4 Simple use case

The following example shows the software management for three EEPROM variables with
the virtual addresses shown in Table 5

 :

For this example, only two Flash pages are necessary: Page 0 and Page 1. In Figure 4:
Data update flow RCRC represents the 16-bit CRC value for this variable element (refer to
Section 4.6: EEPROM emulation robustness for more details about CRC).

Figure 4: Data update flow shows only the write commands which are done sequentially in
increasing order of Flash addresses.

Table 5. Emulated EEPROM virtual addresses

Variable Virtual address Data width

Var1 0x0001 32-bit

Var2 0x2000 32-bit

Var3 0x7777 16-bit

Im
p

le
m

e
n

tin
g

 E
E

P
R

O
M

 em
u

latio
n

A
N

4894

1
4/3

5
A

N
48

94 R
ev 3

Figure 4. Data update flow

MSv45028V2
Legend: User command

Page 0

FFFFFFFFFFFFFFFFFFFF

Page 1

ERASED
FFFFFFFFFFFFFFFFFFFF

Page 0

FFFFFFFFFFFFFFFFFFFF

Page 1

ERASED
FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

Page 0

ACTIVE
7777RCRC32120000

Page 1

ERASED
FFFFFFFFFFFFFFFFFFFF

Page 0

ACTIVE
7777RCRC32120000

Page 1

ERASED
FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

Write Var3 = 0x1232

Page 0

ACTIVE
7777RCRC32120000

Page 1

ERASED
FFFFFFFFFFFFFFFFFFFF

Page 0

ACTIVE
7777RCRC32120000

Page 1

ERASED
FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

Write Var3 = 0x1245

7777RCRC45120000

Page 0 Page 1

ERASED
FFFFFFFFFFFFFFFFFFFF

Page 0 Page 1

ERASED
FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

Page 0

ACTIVE
7777RCRC32120000

Page 1

ERASED
FFFFFFFFFFFFFFFFFFFF

Page 0

ACTIVE
7777RCRC32120000

Page 1

ERASED
FFFFFFFFFFFFFFFFFFFF

0020RCRC67452301

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

(Number of variable elements per page - 4) Var3 Writes
+ Write Var2 = 0x01234567

Page 0

VALID
7777RCRC32120000

Page 1

RECEIVE

Page 0

VALID
7777RCRC32120000

Page 1

RECEIVE

FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

Write Var3 = 0x1245

7777RCRC45120000

Page 0 Page 1

ERASED
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

Clean Up (Erase Page 0)

W
rite Var1 = 0xADADADAD

ACTIVE
7777RCRC32120000
7777RCRC45120000

0100RCRCADADADAD
7777RCRC45120000

0100RCRCADADADAD
7777RCRC67120000

7777RCRC89120000

Data transfer Intermediate step

0100RCRCADADADAD
7777RCRC67120000

7777RCRC89120000
0020RCRC67452301

0020RCRC67452301

7777RCRC45120000
0100RCRCADADADAD

Page 0

ERASING
7777RCRC32120000

Page 1

ACTIVE

Page 0 Page 1

ERASED
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

7777RCRC45120000
0100RCRCADADADAD
7777RCRC67120000

7777RCRC89120000
0020RCRC67452301

Data transfer final step

7777RCRC45120000
0100RCRCADADADAD
0020RCRC67452301

ACTIVE

FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

7777RCRC45120000
0100RCRCADADADAD
0020RCRC67452301

Page 0

ERASING
7777RCRC32120000

Page 1

ACTIVE

FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF

7777RCRC45120000
0100RCRCADADADAD
7777RCRC67120000

7777RCRC89120000
0020RCRC67452301

7777RCRC45120000
0100RCRCADADADAD
0020RCRC67452301

Form
at EEPRO

M

ACTIVE

AN4894 Rev 3 15/35

AN4894 Implementing EEPROM emulation

34

3.5 Reading data

Read commands perform Flash reads from the highest to the lowest address in the ACTIVE
or VALID page, and return only valid data. Data is considered valid if it is the latest to be
written at a given virtual address, and the integrity check using CRC passes. Note also that
only valid data is copied during the data transfer mechanism.

Advanced features AN4894

16/35 AN4894 Rev 3

4 Advanced features

The EEPROM emulation firmware is designed to fulfill most of the requirements for an
embedded application in terms of non-volatile storage. This section covers these
requirements in detail. Other embedded application requirements may be needed in
particular cases and are addressed in section Section 6: Embedded application aspects.

4.1 Data granularity management

Emulated EEPROM can be used in embedded applications where non-volatile storage of
data updated with a byte, half-word, or word granularity is required. Data size generally
depends on application requirements such as sensor or communication-interface data size.

The EEPROM emulation firmware is designed to support byte, 16-bit half-word and 32-bit
word granularity. However, in order to optimize the Flash memory usage, the user
application could gather all smaller sized data elements into 32-bit data elements before
storing the content in emulated EEPROM. This would ensure an optimal use of the 64-bit
Flash line by simultaneously writing the 16-bit virtual address, the 16-bit CRC and the 32-bit
data value.

Note: The minimal write width in Flash memory is 64-bits due to its ECC (Error Correcting Code)
that cannot be switched off.

4.2 Wear leveling algorithm and Flash page allocation

A wear leveling algorithm allows monitoring and even distribution of Flash Write and Erase
operations between Flash pages. When no wear-leveling algorithm is used, the pages are
not used at the same rate. For instance, pages with long-lived data do not endure as many
Write and Erase cycles as pages that contain frequently updated data. The wear-leveling
algorithm ensures that equal use is made of all the available write cycles for each Flash
page.

By design, the EEPROM emulation algorithm distributes evenly the Flash write and Erase
operations between Flash pages. Flash writes are performed sequentially in increasing-
address order whatever user variable is written. When one set of pages is full, the valid
elements are copied to the other set of pages, and the first set of pages is fully erased.

AN4894 Rev 3 17/35

AN4894 Advanced features

34

4.3 Guard pages

In order to even further reduce wear on Flash pages, the user can decide to add an even
number of Flash guard pages (1 guard page per set of pages by default). No guard page is
necessary if the number of emulated variables leaves significant room in the ACTIVE page.
Increasing this number (4,6,...) increases the Flash endurance beyond the guaranteed
value. This feature is closely linked to the emulated EEPROM cycling capability - refer to
paragraph Section 4.4: Cycling capability: EEPROM endurance improvement.

Taking an example based on the STM32L4, an emulation of 1000 EEPROM variables could
be stored in two sets of 4 Flash pages (each page being able to store 252 elements). When
all elements are written once (or after a page transfer), only 8 more elements can be written
before a new page transfer is triggered. In this case, the addition of 2 guard pages is
recommended (one per set of pages) so that 260 writes can be performed before a new
page transfer is triggered.

4.4 Cycling capability: EEPROM endurance improvement

When EEPROM technology is used, each byte can be individually programmed a finite
number of times (typically in the range of 1 million). When Flash technology is used, it is not
possible to write to a non-erased address, and the minimum erase size is the Flash page
size. Consequently, we need to define a program/erase cycle which consists of several
Flash line write accesses followed by one Flash page erase operation.

Each STM32 device on-chip Flash memory page can be programmed and erased reliably a
limited number of times. For write-intensive applications that need to update each variable
more than this number, the wear leveling algorithm allows the endurance of the emulated
EEPROM to be increased.

Table 6 shows the limit number of reliable programming and erasing operations for devices
covered by this application note:

Knowing the requested size of emulated EEPROM and the targeted endurance, it is possible
to compute the Flash memory size to be used for that purpose. The Flash memory size is
also a function of the data width of stored variables.

Table 6. Flash memory endurance

STM32 Series Flash memory endurance

STM32L4 Series 10 kcycles

STM32L4+ Series 10 kcycles

STM32L5 Series 10 kcycles

STM32G0 Series
10 kcycles (1 kcycles for STM32G030x6/x8 and
STM32G070CB/KB/RB)

STM32G4 Series 10 kcycles

STM32WB Series 10 kcycles

Advanced features AN4894

18/35 AN4894 Rev 3

Note: To get the same information for other STM32 Series you can apply the formula presented in
Section 4.5: Computing the required size of Flash for EEPROM emulation.

Table 7. Flash usage for a 4000-byte emulated EEPROM (STM32L4/L4+)

Data width

Number of
pages

needed for
10 kcycles
endurance

Flash size for
10 kcycles
endurance

Number of pages
needed for
100 kcycles
endurance

Flash size for
100 kcycles
endurance

STM32L4

8-bit 34 68 Kbytes 322 644(1) Kbytes

1. Not applicable for STM32L4: a maximum of 512 Kbytes can be allocated to EEPROM emulation. Please
refer to the STM32 product datasheet for the size of each bank.

16-bit 18 36 Kbytes 162 324 Kbytes

32-bit 10 20 Kbytes 82 164 Kbytes

STM32L4+

8-bit 18 72 Kbytes 162 648 Kbytes

16-bit 10 40 Kbytes 82 328 Kbytes

32-bit 6 24 Kbytes 42 168 Kbytes

AN4894 Rev 3 19/35

AN4894 Advanced features

34

4.5 Computing the required size of Flash for EEPROM emulation

As first approximation, the required size of Flash memory is proportional to the emulated
EEPROM size and to the cycling capability. Table 7: Flash usage for a 4000-byte emulated
EEPROM (STM32L4/L4+) can be used to estimate the required size of Flash memory
according to the data width of stored elements for STM32L4 Series and STM32L4+ Series
MCUs.

For a precise Flash memory size requirement, whatever the STM32 Series, use the formula
below:

Note: Values of ‘Flash memory endurance values (kcycles)’ for applicable STM32 Series are
listed in Table 6: Flash memory endurance.

The formula is decomposed into the following steps:

1. Knowing the number of elements a Flash page can store (refer to Table 4: Flash
memory properties) compute the number of Flash pages needed to store the EEPROM
elements. (The calculated Flash memory size is independent of the element data
width).

2. Multiply the number of pages by the targeted integer cycling ratio (for instance 1 for the
standard 10 kcycles endurance or 10 to achieve 100 kcycles endurance when the
Flash memory endurance is 10 kcycles). The Flash-memory endurance of the product
(indicated in Table 6: Flash memory endurance), must be taken into account.

3. Multiply the number of Flash pages by 2 in order to take into account the data transfer
mechanism.

4. Add the number of guard pages (an even number) to get the final number of Flash
pages.

5. Knowing the Flash page size for your product (refer to Table 4: Flash memory
properties), compute the Flash memory size required by the EEPROM emulation.

STM32L4 calculation example

In order to store 4000 individual bytes, and knowing that each page can store up to 252
elements, a set of pages must comprise 16 Flash pages. A second set of pages, of the
same size, is required to transfer data when the first one is full. If we assume that we use 2
guard pages, 34 Flash pages are necessary.

Note: This calculation is a slightly conservative estimation.

Number of EEPROM variables

Variable elements per page
Flash size = x

Number of cycles

Flash memory endurance (kcycles)
+ Number of guard pages x Page sizex 2

Where represents the next higher integer

Advanced features AN4894

20/35 AN4894 Rev 3

4.6 EEPROM emulation robustness

In an embedded application, it is possible that a power failure or asynchronous reset might
occur while programming or erasing the Flash memory. In this case, the content of the Flash
line (if programming) or the complete Flash page (if erasing) is unknown. There could be a
single- or a multiple-bit error, with or without Error Correcting Code Detection (ECCD) or
correction (ECCC).

Note: The hardware ECC is designed to detect and correct errors after Flash memory wear, but
not to detect Flash program or erase operation interruptions reliably.

The EEPROM emulation software is designed and validated to be robust against power
failures and asynchronous resets. This robustness relies on several features in the Flash
interface and EEPROM emulation driver that are detailed in the following paragraphs. Refer
to the product errata sheet for the Flash limitations and workarounds.

4.6.1 Data recovery

In order to detect corrupted data (virtual address and/or data value), a 16-bit CRC (cyclic
redundancy check) has been implemented. It is based on the ANSI CRC-16 with the
following polynomial: x15 + x2 + 1 (represented as 0x8005). Even though this polynomial
offers a very high detection rate, it can be modified by the user in the EEPROM
configuration file.

When writing a variable element, it is stored with its corresponding CRC value. When
reading or transferring a variable element, the CRC is computed and checked against the
value stored in the variable element. If it matches, the variable element is considered as
valid. In the case of a mismatch, the variable element is invalidated.

Note: The CRC peripheral is used by the EEPROM emulation software in order to accelerate the
CRC computation.

The data recovery feature relies on the fact that a full zeros (and only a full 64-bit zeros) can
be written to an already programmed non-null word; invalidating a variable element is done
by writing zeros in the variable element. As a consequence, this precludes the use of
0x0000 as virtual address for the variable element.

Note: The virtual address 0xFFFF is also forbidden as it corresponds to an erased Flash line.

The data recovery mechanism also requires the user to write zeros in case an ECCD NMI is
triggered on this Flash line. This is achieved by calling the
FI_DeleteCorruptedFlashAddress function from the NMI service routine in case the
ECC detects an error that it cannot correct (that is, the ECCD bit is set).

This mechanism is only applied during the cleanup phase operated in the EE_Init
function. After this phase, it is assumed that there are no further NMI trigger events.

It is possible that, for some reason, the zero programming operation fails and that a Flash
programming error flag (PROGERR, PGAERR or PGSERR) is raised (for example if the
Flash line was already at 0, PROGERR is raised).The line then is considered invalid and is
kept in its current state (the NMI service routine exits without doing anything).

If flags other than PROGERR, PGAERR or PGSERR are set, the NMI routine enters an
infinite loop.

AN4894 Rev 3 21/35

AN4894 Advanced features

34

If, despite the cleanup phase, another NMI is triggered during the EEPROM emulation,
nothing is done. The fact that the NMI is raised is considered to invalidate the line. The
cleanup phase eliminates the majority of lines corrupted by an asynchronous reset or power
down. Thus, after the cleanup phase, the number of remaining NMIs should, in most cases,
be 0.

If, during the first write to a variable element with a given address, the write is interrupted by
a power failure or an asynchronous reset, the driver considers that there is no data at this
address. In all other cases the EEPROM emulation software always returns the latest valid
data value by finding the previous value for this data stored in Flash memory.

4.6.2 Page header recovery

Similarly to data corruption, the page header can be corrupted in the case of power loss or
asynchronous reset during a header update or a Flash page erase.
To detect this corruption and recover from it, the EE_Init routine is implemented. It should
be called immediately after power-up. This routine checks the sequence of page statuses
for integrity and performs a repair if necessary. This ensures that no data is lost. Refer to
Section 5.3: EEPROM emulation timing for more details.

In order to avoid a possible failure scenario, erased pages are systematically erased again
upon reset (in the EE_Init routine). This ensures a safe behavior but consumes cycling
capability of the emulated EEPROM. This systematic erase can be avoided if the application
is designed not to generate an asynchronous reset or power failure during Flash writes or
erases. Refer to Section 6.2: Detecting power failures for more details.

Robustness is achieved at the expense of several checks and recovery mechanisms
implemented in the EE_Init routine. This induces a slight code size increase and longer
initialization time when compared with simpler EEPROM emulations. See Section 5.3:
EEPROM emulation timing for further details.

4.7 Real-time considerations

The provided implementation of the EEPROM emulation firmware runs from internal Flash
memory, thus accesses to the same Flash bank are stalled during Flash erase or
programming operations (EEPROM initialization, variable update or page erase).

As a consequence, the application code is not executed and interrupts cannot be served
during a maximum time equal to the longest page-erase operation duration for your STM32
product (see the applicable datasheet). This behavior may be acceptable for many
applications, however for applications with real-time constraints, the user needs to take
corrective action.

4.7.1 Devices embedding Flash memory with RWW (Read While Write)
capability

With STM32 devices embedding a dual-bank Flash memory, it is recommended to put the
critical routines (Vector table, critical interrupt service routines) in one Bank and the area
used for EEPROM emulation in the other bank. The Flash area in the bank used for
EEPROM emulation can still be used, but with execution delays during Flash Write and
Erase operations.

Advanced features AN4894

22/35 AN4894 Rev 3

Note: In order to know whether your STM32 device supports Flash Read While Write capability,
please refer to the product datasheet.

4.7.2 Running the critical processes from the internal RAM

Another way to fulfill real-time constraints is to run the critical code from internal RAM:

1. Relocate the vector table into the internal RAM.

2. Execute all critical processes and interrupt service routines from the internal RAM. The
compiler provides a keyword to locate the functions in RAM; the functions are copied
from the Flash memory to the RAM at system startup just like any initialized variable.

Note: It is important to note that for a RAM function, all used data and called functions should be
located within the RAM.

4.7.3 Dual core considerations

On some STM32 devices, two cores are available (refer to the applicable STM32 product
datasheet and reference manual for more information). This is the case for a majority of the
products from the STM32 Wireless Series for example.

STM32WB Series MCUs integrate a main core (CPU1, ARM Cortex-M4) alongside a
second core (CPU2, ARM Cortex-M0+) that is dedicated to radio. Here we consider an
example in a radio context, where CPU1 runs the EEPROM emulation and needs to
process a Flash operation.

To achieve this while avoiding conflicts with CPU2, CPU1 must check that the radio
application running on CPU2:

• is not currently accessing Flash memory

• does not urgently need to access Flash memory.

Note: Erase operations in particular take a relatively long time regarding the radio protocol
specifications. Therefore, a mechanism must also be implemented to avoid the start of a
long CPU1 operation (such as an erase) if CPU2 has already planned an urgent Flash
operation.

Application developers adapting the EEPROM emulation application for a dual-core product
may need to implement these verifications.

For instance, for STM32WB Series MCUs it is possible to use the following features:

• the hardware semaphore feature (HSEM)

• the CRPF bit from the PWR_EXTSCR register bit (set when a critical radio operation is
ongoing).

Both are available on STM32WB Series MCUs.

Note: The same problematic applies to some dual-core applications other than radio.

For STM32WB Series products integrating a Bluetooth® Low-Energy (BLE) stack, a ‘Flash
access management’ mechanism, based principally on the hardware semaphore feature, is
described in an application note [2].

AN4894 Rev 3 23/35

AN4894 Advanced features

34

For the P-NUCLEO-WB55 Nucleo board, two examples are provided in the X-CUBE-
EEPROM firmware package (see Section 5.1.2: STM32Cube expansion software (X-CUBE-
EEPROM)):

• An example that simply exploits the EEPROM emulation driver (similar to the examples
for other Series).

• An example that maintains a BLE connection and communication while processing
EEPROM operations. It follows the Flash access timing rules in AN5289 [2], and can
be used as a reference for implementing this mechanism.

To determine the availability of the above mechanisms for other ST MCUs with RF stacks,
please refer to their datasheets and other related documentation.

4.8 Cleaning up the Flash memory in Interrupt or Polling mode

Once the valid elements are transferred to a new set of pages, the previous set of pages
needs to be erased. The EEPROM emulation driver raises a flag requesting the main
application to clean up the Flash memory. This clean up can be delayed by the application
program until the real time constraints on the application are lowered (for instance, before
going to low power mode).

This Flash clean up can be done in polling mode (by calling the EE_CleanUp function)
meaning that the cleanup function does not return before one set of Flash pages used for
EEPROM emulation is erased. It can also be done in interrupt mode (by calling the
EE_CleanUp_IT function) meaning that the cleanup function returns immediately and
following page erases are done by subsequent interrupt service routines.

API and application examples AN4894

24/35 AN4894 Rev 3

5 API and application examples

5.1 EEPROM emulation software description

This section describes the driver implemented for EEPROM emulation using the
STM32Cube firmware for your device Series, provided by STMicroelectronics.

5.1.1 Key features

• user-configured EEPROM size

• supports 8-bit, 16-bit and 32-bit variables

• increased EEPROM memory endurance versus Flash memory endurance

• wear-leveling algorithm

• possible interrupt servicing during program and erase operations

• robust against asynchronous resets and power failures

• Optional protection implementation for Flash-memory sharing between cores in
multicore STM32 devices (for example STM32WB Series products).

5.1.2 STM32Cube expansion software (X-CUBE-EEPROM)

The EEPROM emulation software is provided as a dedicated software package called
X-CUBE-EEPROM. It is classified as a middleware utility in order to be compliant with all
development boards and product Series.

Figure 5. Directory tree

AN4894 Rev 3 25/35

AN4894 API and application examples

34

A sample demonstration project using the EEPROM emulation driver is also supplied in
order to demonstrate how to manage 1000 non-volatile variables. Sample projects are
provided for the boards listed in Table 8. They are located in the
Projects\STM32xx\EEPROM_Emul package folders, and can easily be tailored to other
boards using the same STM32 MCU Series.

One more example is provided for the P-NUCLEO-WB55.Nucleo board. It is located at
Projects\STM32WB\BLE_HeartRate_EEPROM_Emul\P-NUCLEO-WB55.Nucleo. The
Nucleo board maintains a BLE connection and communication in addition to processing
EEPROM operations. By using the DUALCORE_FLASH_SHARING preprocessor-defines
symbol, this example follows the Flash sharing mechanism and timing rules described in
Section 4.7.3: Dual core considerations.

The project contains four source files:

• eeprom_emul.c: contains the EEPROM emulation firmware functions that can be
called from the user program:

EE_Format
EE_Init
EE_ReadVariable32bits
EE_WriteVariable32bits
EE_ReadVariable16bits
EE_WriteVariable16bits
EE_ReadVariable8bits
EE_WriteVariable8bits
EE_CleanUp
EE_CleanUp_IT
EE_DeleteCorruptedFlashAddress

• flash_interface.c: contains the functions needed to handle the STM32 Flash specific
features.

• main.c: this application program is an example using the described routines in order to
configure, write to and read from the emulated EEPROM.

• stm32xxxx_it.c: shows an example of interrupt service file using the
EE_DeleteCorruptedFlashAddress function in the NMI handler.

For the BLE STM32WB Series example, BLE_HeartRate_EEPROM_Emul, the code
illustrating the driver exploitation can be found in the Core/Src/app_entry.c file. In particular,
the functions EEPROM_Emul_Init and EEPROM_Emul_Operation are examples of
sequencer tasks for EEPROM driver initialization and exploitation (read and write
operations).

Table 8. Boards covered

STM32 Series Boards covered

STM32L4 Series STM32L476G-Discovery

STM32L4+ Series STM32L4R5ZI_Nucleo

STM32L5 Series NUCLEO-L552ZE-Q

STM32G0 Series NUCLEO-G071RB

STM32G4 Series NUCLEO-G431RB

STM32WB Series P-NUCLEO-WB55

API and application examples AN4894

26/35 AN4894 Rev 3

5.1.3 User defines

The EEPROM emulation algorithm parameters should be configured according to the
application needs; they are located in the eeprom_emul_conf.h file:

• NB_OF_VARIABLES (default 1000): Number of non-volatile elements, each element
value being 8-, 16- or 32-bit.

• START_PAGE_ADDRESS: Address of the first Flash page used for EEPROM
emulation.
For dual-bank capable devices, the first address of the second bank is a good example
value for this parameter in order to benefit from this feature (see Section 4.7.1: Devices
embedding Flash memory with RWW (Read While Write) capability).

• CYCLES_NUMBER (default 1): The number of kcycles, X, for the equivalent EEPROM
endurance. If CYCLES_NUMBER equals 10, the emulated EEPROM has an
equivalent endurance of 10 x X kcycles. X is the Flash endurance for the product used
and listed in Table 6: Flash memory endurance.

• GUARD_PAGES_NUMBER (default 2): Number of guard pages used to reduce
pressure on Flash memory. This number has to be even.

• CRC_POLYNOMIAL_LENGTH (default 16): No need to modify in most cases; a 16-bit
CRC is optimized in terms of computational speed and Flash size, and offers a very
good detection rate.

• CRC_POLYNOMIAL_VALUE (default 0x8005): No need to modify in most cases; this
ANSI CRC is optimized in terms of computational speed and Flash size, and offers a
very good detection rate.

To activate the dual-core Flash sharing mechanism in the context of the Bluetooth Low
Energy stack of the STM32WB Series, DUALCORE_FLASH_SHARING must be defined as
a preprocessor symbol in user software.

AN4894 Rev 3 27/35

AN4894 API and application examples

34

5.1.4 User API definition

The set of functions that can be called by the applicative program are described in Table 9.
They are defined in the eeprom_emul.c module.

Table 9. API definition

Function name Description

EE_Format
Erases all Flash pages used for EEPROM emulation and writes an ACTIVE
header to the first page.

EE_Init

Configures the EEPROM emulation variables to their initial state and restores
the Flash pages to a known good state in case of asynchronous reset or
power loss during Flash write or erase operation.

Erases the Flash pages that need to be erased (for instance pages not fully
erased in ERASE state, pages in ERASING state). The EE_FORCE_ERASE
parameter has to be used by default. If the application guarantees that no
asynchronous reset nor power loss can happen during Flash write or erase
operations, then the EE_CONDITIONAL_ERASE parameter can be used; refer
to Section 4.6.2: Page header recovery.

After reset, this function should be systematically called prior to accessing the
emulated EEPROM.

EE_ReadVariableXXbits

This function updates the data value corresponding to the virtual address
passed as a parameter. Only the last stored element is read.

It returns a Status equal to EE_OK unless it cannot find any data at the given
virtual address.

Three functions are implemented to deal with all supported data sizes (XX = 8,
16 or 32).

EE_WriteVariableXXbits

This function updates the EEPROM at a given virtual address with the data
value passed as parameters.

If the set of pages used for EEPROM emulation is full, it triggers a Flash page
transfer and returns a Status equal to EE_CLEANUP_REQUIRED. In the
case of the BLE application for the NUCLEO-WB55 Nucleo board
(DUALCORE_FLASH_SHARING is defined), it can return EE_FLASH_USED
when the Flash is used by CPU2(1)

Three functions are implemented to deal with all supported data sizes (XX = 8,
16 or 32).

EE_CleanUp

Erases the set of pages in ERASING state. The application program can call
this function when real-time constraints are low. The Flash cleanup is done in
polling mode so this function does not return before one set of Flash pages
used for EEPROM emulation is erased.

EE_CleanUp_IT
Erases the set of pages in ERASING state. The Flash cleanup is started in
interrupt mode so this function returns immediately and following page erase
is done by subsequent interrupt service routines.

FI_DeleteCorruptedFlashAd
dress

This function can be called under NMI to delete a corrupted Flash Address
found by the Flash ECCD in order to clear this Flash interface Fault
Section 4.6.1: Data recovery.

1. EE_WriteVariableXX bits can return EE_FLASH_USED only in the case of direct EEPROM variable writing and not
in the case of a page transfer, a page header update or the initialization process. Also, when this value is returned, the
driver can activate the HSEM interrupt so that an interrupt is raised when the CPU2 releases the semaphore associated to
the Flash device being used. The user program can then do something else while waiting for the semaphore release.

API and application examples AN4894

28/35 AN4894 Rev 3

5.2 EEPROM emulation memory footprint

Table 10 details the footprint of the EEPROM emulation driver in terms of Flash memory,
RAM and Stack size.

The figures shown have been determined using the IAR EWARM 8.42.2 tool with High Size
optimization level. Note that this algorithm does not use Heap.

Table 10 does not take into account the Flash size used for EEPROM emulation itself. Refer
to the formula given in Section 4.5: Computing the required size of Flash for EEPROM
emulation to calculate the corresponding Flash memory size.

Note also that the application program (main.c) implements the VarDataTab[]variable to
store the EEPROM element values. Its size is 4000 bytes for 1000 32-bit elements.

For flexibility, this variable is placed in RAM in the provided example. Moreover
VarDataTab[] can easily be removed as most user applications do not need to have a
RAM copy of the elements stored in Flash memory.

Table 10. Memory footprint for EEPROM emulation mechanism

STM32 Series
Required(1) code and data size in bytes

1. Based on 1000 elements (16-bit address, 16-bit CRC and 32-bit data)

Flash SRAM

STM32L4 Series 4256 12

STM32L4+ Series 4286 12

STM32L5 Series 4728 12

STM32G0 Series 3812 12

STM32G4 Series 4946 12

STM32WB Series 5392 16

STM32WB Series(2)

2. Example with BLE communication

3328 14

AN4894 Rev 3 29/35

AN4894 API and application examples

34

5.3 EEPROM emulation timing

This section describes the timing parameters associated with the EEPROM emulation driver
based on 1000 32-bit variables.
All timing measurements are performed with the following conditions:
• At VDD = 3.3 V

• With execution from Flash memory (from the bank not used for EEPROM variables,
when dual bank is used)

• At room temperature

• Based on 100 operations for each types of operation.

Table 11 lists the timing values for the EEPROM emulation driver in these conditions. In
other conditions (for instance for a different number of variables, cycles endurance or a
different MCU frequency), these timings can differ significantly.

Table 11. EEPROM emulation timings for different targets

Target Conditions Operation Mean Min. Max.

STM32L476G-
DISCO

– System clock
= 80 MHz

– ART enabled

– Flash prefetch
disabled

– Endurance =
100 kcycles

EEPROM Initialization with
forced Erase(1) 1.2215 s 904.4 ms 2.0212 s

EEPROM Initialization with
conditional Erase(1)(2) 365.56 ms 6.1 ms 1.2499 s

Write operation in EEPROM See note(3) 90 µs 344.90 ms

Read operation from
EEPROM(4) 47.412 µs 9.3 µs 311.5 µs

EEPROM Cleanup(1) 900.27 ms 900.13 ms 900.38 ms

EEPROM Cleanup IT(1) 900.19 ms 900 ms 900.38 ms

NUCLEO-L4R5ZI

– System clock
= 80MHz(5)

– ART enabled

– Flash prefetch
disabled

– Endurance =
100 kcycles

EEPROM Initialization

with forced Erase(1)
741.69 ms 509.6 ms 884 ms

EEPROM Initialization with
forced Erase(1)(2) 466.91 ms 5.8 ms 776.9 ms

Write operation in
EEPROM See note(3) 90 µs 307.20 ms

Read operation from

EEPROM(4) 75.639 µs 9 µs 314.3 µs

EEPROM Cleanup(1) 461.90 ms 461.8 ms 462 ms

EEPROM Cleanup IT(1) 461.86 ms 461.8 ms 462 ms

API and application examples AN4894

30/35 AN4894 Rev 3

NUCLEO-L552ZE-Q

– System clock
= 110 MHz

– ICACHE
disabled

– Endurance =
10 kcycles

EEPROM Initialization
with forced Erase(1) 365.10 ms 111.1 ms 670 ms

EEPROM Initialization
with conditional
Erase(1)(2)

267.5 ms 1.5 ms 680 ms

Write operation in EEPROM See note(3) 90 µs 580.18 ms

Read operation from
EEPROM(4) 149.3 µs 10 µs 485.6 µs

EEPROM Cleanup(1) 109.85 ms 109.80 ms 109.89 ms

EEPROM Cleanup IT(1) 109.85 ms 109.81 ms 109.88 ms

NUCLEO-G071RB

– System clock
= 64 MHz

– Endurance =
10 kcycles

EEPROM Initialization
with forced Erase(1) 251.17 ms 111.4 ms 814.4 ms

EEPROM Initialization
with conditional
Erase(1)(2)

233.43 ms 1.47 ms 792.9 ms

Write operation in EEPROM See note(3) 90 µs 702.18 ms

Read operation from
EEPROM(1) 102.16 µs 14 µs 592 µs

EEPROM Cleanup(1) 110.39 ms 110.37 ms 110.40 ms

EEPROM Cleanup IT(1) 110.41 ms 110.40 ms 110.43 ms

NUCLEO-G431RB

– System clock
= 170 MHz

– Endurance =
10 kcycles

EEPROM Initialization
with forced Erase(1) 179.33 ms 110.3 ms 349.4 ms

EEPROM Initialization
with conditional
Erase(1)(2)

160.90 ms 600 µs 356.3 ms

Write operation in EEPROM See note(3) 90 µs 260.67 ms

Read operation from
EEPROM(4) 74.242 µs 6 µs 170 µs

EEPROM Cleanup(1) 109.89 ms 109.86 ms 109.89 ms

EEPROM Cleanup IT(1) 109.90 ms 109.89 ms 109.92 ms

P-NUCLEO-
WB55.Nucleo(6)

– System clock
= 64 MHz

– Endurance =
10 kcycles

EEPROM Initialization
with forced Erase(1) 276.83 ms 67.27 ms 561.32 ms

EEPROM Initialization
with conditional
Erase(1)(2)

258.65 ms 1.86 ms 539.78 ms

Write operation in EEPROM See note(3) 90 µs 476.26 ms

Read operation from
EEPROM(4) 289.25 µs 11 µs 570 µs

EEPROM Cleanup(1) 65.867 ms 65.82 ms 65.92 ms

EEPROM Cleanup IT(1) 64.966 ms 64.90 ms 65.92 ms

Table 11. EEPROM emulation timings for different targets

Target Conditions Operation Mean Min. Max.

AN4894 Rev 3 31/35

AN4894 API and application examples

34

Note: These timing measurements are provided in order to give the reader an idea of the
emulation firmware performance for different STM32 Series. They are based on 100
operations for each type of operation, thus they are not an absolute reference. It is possible
to find different minimums, maximums and even means (especially if the measurement
conditions are modified).

1. The maximum initialization time and cleanup time depends on the number of Flash EEPROM pages used, and the time to
erase one page. (See the section "Flash memory characteristics" in the STM32 product datasheet). The time taken to
erase Flash EEPROM pages = number of pages * tERASE.

2. When the application ensures the EEPROM emulation cannot be interrupted by an asynchronous reset or power failure, a
conditional Erase can be used. It is more efficient in terms of execution time and also in terms of EEPROM endurance
(refer to Section 4.6.2: Page header recovery for more details).

3. The typical write time is close to the minimal write time as there is no data transfer in most cases. The maximum value
refers to a write operation that generates a data transfer.

4. The minimum value refers to a read operation of the last element stored in the Flash memory and the maximum value
refers to a read operation of first element stored in Flash memory.

5. Timing measurements for the STM32L4+ Series board (NUCLEO-L4R5ZI) has been done for a 80 MHz system clock so
that a comparison can be done with the STM32L4 Series (NUCLEO-L476RG). However, the NUCLEO-L4R5ZI can be
pushed up to 120 MHz while the NUCLEO-L476RG is limited at 80 MHz. The measurements for the other boards are done
for the maximum system clock.

6. Data taken from example without BLE capabilities.

Embedded application aspects AN4894

32/35 AN4894 Rev 3

6 Embedded application aspects

This section provides advice on how to overcome software limitations in embedded
applications and how to fulfill the needs of different applications.

6.1 Data retention

The Flash data retention is typically 30 years @ 85°C after cycling 1000 times (please refer
to the STM32 product datasheet for more complete data). Nothing specific is done in the
EEPROM emulation driver to increase the EEPROM data retention. However, when a page
transfer is initiated, all data (including long-lived data) is copied to a new Flash page. This
ensures an EEPROM data retention significantly higher than the original Flash data
retention.

6.2 Detecting power failures

If no asynchronous reset can be generated by the application, the only way to corrupt the
Flash programming or erasing operations is the case of power failure. The application can
use the PVD in order to not generate a Flash write or erase operation during the VDD ramp
down. An example of this PVD (Programmable Voltage Detector) usage is provided in the
EEPROM example main application.

The decoupling capacitors or battery must be sized to provide enough power to the chip
during the full write or erase operation and before the supply voltage goes below 1.7 V
(minimal operating voltage) or before a BOR (Brown Out Reset) is generated. In this case,
the EE_CONDITIONAL_ERASE parameter of the EE_Init routine can be used. In all other
cases, the EE_FORCE_ERASE parameter has to be used.

6.3 Reducing worst case access times

An EEPROM read command consists of performing Flash reads from the highest to the
lowest address in the ACTIVE and VALID pages. If the data to retrieve was the first to be
written, this process can be quite long. Similarly, the page transfer searches for all virtual
addresses used during EEPROM emulation and looks for corresponding data values. These
read and transfer times can be quite long when the size of emulated EEPROM is large.

The worst-case read and write access times can be reduced by implementing a LUT (Look
Up Table) storing the element values in RAM. Although implementing a LUT does not affect
the typical access times and is quite costly in terms of RAM space, it could still be an option
implemented in a future revision of the EEPROM emulation driver.

AN4894 Rev 3 33/35

AN4894 Conclusion

34

7 Conclusion

The STM32 devices’ internal Flash memory can be used advantageously in many
applications to emulate an EEPROM. Even though the memory characteristics are quite
different, this application note has shown that emulated EEPROM competes with real
EEPROM in terms of:

• Memory size

• Read and write access times

• Driver usage simplicity and flexibility

• Memory endurance

• Data retention

• Robustness to asynchronous resets and power failures

• Reliability

and mainly:

• cost by removing the need for an external component.

Revision history AN4894

34/35 AN4894 Rev 3

8 Revision history

Table 12. Document revision history

Date Revision Changes

11-Jul-2017 1 Initial release.

20-Sep-2018 2

Updated document to scope STM32L4 and STM32L4+ Series
devices.

Updated:

– Figure 1: Page status evolution

– Figure 2: Page status valid transitions

– Section 3.3: Page and variable format

– Figure 3: Flash Page and EEPROM variable format

– Section 4.4: Cycling capability: EEPROM endurance improvement

– Table 7: Flash usage for a 4000-byte emulated EEPROM
(STM32L4/L4+)

– Section 4.7.1: Devices embedding Flash memory with RWW (Read
While Write) capability

– Section 5.1.3: User defines

– Section 5.2: EEPROM emulation memory footprint

– Section 5.3: EEPROM emulation timing

Added Section 4.5: Computing the required size of Flash for
EEPROM emulation.

01-Jun-2020 3

Updated:

– Document title

– Introduction

– Section 3.3: Page and variable format and Table 4: Flash memory
properties

– Section 3.4: Simple use case

– Section 4.4: Cycling capability: EEPROM endurance improvement
and Table 6: Flash memory endurance

– Section 4.5: Computing the required size of Flash for EEPROM
emulation

– Section 4.6.1: Data recovery

– Section 4.7.3: Dual core considerations

– Section 5.1.1: Key features

– Section 5.1.2: STM32Cube expansion software (X-CUBE-
EEPROM), Figure 5: Directory tree, and Table 8: Boards covered

– Section 5.1.3: User defines

– Section 5.1.4: User API definition and Table 9: API definition

– Section 5.2: EEPROM emulation memory footprint and Table 10:
Memory footprint for EEPROM emulation mechanism

– Section 5.3: EEPROM emulation timing and Table 11: EEPROM
emulation timings for different targets.

AN4894 Rev 3 35/35

AN4894

35

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved

	Table 1. Applicable products
	1 General information
	1.1 Reference documents
	Table 2. Related documents

	2 Main differences between external and emulated EEPROM
	Table 3. Differences between external and emulated EEPROM
	2.1 Difference in write access time
	2.2 Programming and erase operations

	3 Implementing EEPROM emulation
	3.1 Principle
	Figure 1. Page status evolution

	3.2 Page status valid transitions
	Figure 2. Page status valid transitions

	3.3 Page and variable format
	Table 4. Flash memory properties
	Figure 3. Flash Page and EEPROM variable format

	3.4 Simple use case
	Table 5. Emulated EEPROM virtual addresses
	Figure 4. Data update flow

	3.5 Reading data

	4 Advanced features
	4.1 Data granularity management
	4.2 Wear leveling algorithm and Flash page allocation
	4.3 Guard pages
	4.4 Cycling capability: EEPROM endurance improvement
	Table 6. Flash memory endurance
	Table 7. Flash usage for a 4000-byte emulated EEPROM (STM32L4/L4+)

	4.5 Computing the required size of Flash for EEPROM emulation
	4.6 EEPROM emulation robustness
	4.6.1 Data recovery
	4.6.2 Page header recovery

	4.7 Real-time considerations
	4.7.1 Devices embedding Flash memory with RWW (Read While Write) capability
	4.7.2 Running the critical processes from the internal RAM
	4.7.3 Dual core considerations

	4.8 Cleaning up the Flash memory in Interrupt or Polling mode

	5 API and application examples
	5.1 EEPROM emulation software description
	5.1.1 Key features
	5.1.2 STM32Cube expansion software (X-CUBE-EEPROM)
	Figure 5. Directory tree
	Table 8. Boards covered

	5.1.3 User defines
	5.1.4 User API definition
	Table 9. API definition

	5.2 EEPROM emulation memory footprint
	Table 10. Memory footprint for EEPROM emulation mechanism

	5.3 EEPROM emulation timing
	Table 11. EEPROM emulation timings for different targets

	6 Embedded application aspects
	6.1 Data retention
	6.2 Detecting power failures
	6.3 Reducing worst case access times

	7 Conclusion
	8 Revision history
	Table 12. Document revision history

